WSEAS Transactions on Heat and Mass Transfer


Print ISSN: 1790-5044
E-ISSN: 2224-3461

Volume 13, 2018

Notice: As of 2014 and for the forthcoming years, the publication frequency/periodicity of WSEAS Journals is adapted to the 'continuously updated' model. What this means is that instead of being separated into issues, new papers will be added on a continuous basis, allowing a more regular flow and shorter publication times. The papers will appear in reverse order, therefore the most recent one will be on top.



Comparative Study Between the Integrated Solar Combined Cycle System and Direct Steam Generation in Solar Aided Power Generation System

AUTHORS: Boumedjirek Mohammed, Merabet Abderrezak, Michel Feidt

Download as PDF

ABSTRACT: Parabolic trough power plants have been developed in the integrated solar combined cycle system (ISCCS) and the direct steam generation (DSG) ,each concept has their configuration due to solar energy combination .The technology for the Solar Aided Power Generation (SAPG) is appeared for optimizing this combination in solar contribution to cycle efficiency. The target of this work is to evaluate the thermodynamic performance on solar hybrid power plants system for ISCCS and DSG concepts, in comparison for a solar to electricity efficiency. The Solar Aided Power Generation is proposed to assuming the solar contribution with evaluation method, for to calculate the generation share of the solar power system in each concept. The study shows that the DSG concept is the best hybrid system to solar-electric efficiency .Further results obtained indicate that solar contribution increase to the DSG concept proposed , in the best extraction of solar thermal for to preheat the feed water heater. The performance of the SAPG estimate the effect of the solar collector area in each concept for annual solar thermal energy.

KEYWORDS: combined, energy, generation, hybrid, power.

REFERENCES:

[1] David. Kearney & Associates. Vashon, Washington, National Renewable Energy Laboratory (NREL). Subcontract And Reviewed By Guidelines (April 2009, December 2010).

[2] Syndicat des énergies renouvelables Les fiches d’informations sur l’énergie solaire thermodynamique, Principle of operation of thermodynamic, www.enr.fr. Accessed on May2010.

[3] Allani Y. CO2 mitigation through the use of hybrid solar-combined cycles. Energy Conversion Management (1997), 38, S661– S7.

[4] Kuenstle, K, Lezuo, A., Reiter, K. Solar powered combined cycle. Proceedings of the Power Gen Europe ’94, Cologne, 1994 17– 19May

[7] Hou H, Xu Z, Yang Y. An evaluation method of solar contribution in a solar aided power generation (SAPG) system based on exergy analysis. Appl Energy 2016;182:1–8.

[8] Johansson .TB, et al., editors. Renewable Energy, Sources for Fuels and Electricity. Washington, DC: Island Press (1993) , P. 234-5.

[9] Kelly, B., Herrmann, U., Hale, M.J. Optimization Studies for Integrated Solar Combined Cycle Systems. Proceedings Of Solar Forum 2001 - Solar Energy: The Power To Choose, Washington.

[10] THE WORLD BANK GROUP Environment Department Concentrating Solar Power (CSP): Into the Mainstream Towards a Sustainable Energy Future/ December 2010 /

[11] Solar Engineering of Thermal Process. Wiliam A.Bickman. John A.Duffie (2013). Simulation in solar process design

[12] McMahan A, Zervos N. Integrating steam generation from concentrating solar thermal collectors to displace duct burner fuel in combined cycle power plants. In: PowerGen International 2009. Las Vegas.

[13] Montes, M.J. et al. Thermo Fluid Dynamic Model and Comparative Analysis of Parabolic Trough Collectors Using Oil, Water/Steam or Molten Salt as Heat Transfer Fluids. In Proceedings of 14th International Solar PACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas, USA (2008).

[14] Benz, N. et al. Advances in Receiver Technology for Parabolic Troughs. Proceedings of 14th International Solar PACES Symposium on Solar Thermal Concentrating Technologies, Las Vegas, USA (2008) .

[15] Zarza E., Valenzuela L., et al. Direct Steam Generation in Parabolic Troughs: Final Results and Conclusions of the DISS Project. Energy (2004) , 29 (5), 635-644.

[16] Krüger D. Krüger J., et al. Kanchanaburi Solar Thermal Power Plant with Direct Steam Generation – Layout. Proceedings of the 16th CSP Solar PACES Symposium, Perpignan, France (2010)..

[17] Eck M., Benz N., et al. The Potential of Direct Steam Generation in Parabolic Troughs - Results of the German Project DIVA. Proceedings of the 14th Biennial CSP Solar PACES Symposium, Las Vegas, USA (2008).

[18] Price H., Lupfert E., et al. Advances in Parabolic Trough Solar Power Technology. Journal of Solar Energy Engineering, (2002) 124(2), 109-125.

[19] Zarza, E., Ed., 2002, DISS phase II— Final Project Report, EU-Project No. JOR3- CT980277

[20] Omar Behara, Abdallah Kellafb, .et al., Instantaneous performance of the first Integrated Solar Combined Cycle System in Algeria. MEDGREEN 2011-LB.Energy Procedia 6 (2011) 185–193.

[21] Eck, M. and Hirsch, T. Dynamics and control of parabolic trough collector loops with direct steam generation, Solar Energy (February 2007), 81(2), 268-279.

[22] Fouad Khaldi, Energy and exergy analysis of the first hybrid solar-gas power plant in Algeria. Proceedings of ECOS 2012 - The 25th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems June 26-29, 2012, Perugia, Italy.

[23] Shukin S., Annerfeldt M.et al . Siemens SGT-800 industrial gas turbine enhanced to 47MW. Design modifications and operation experience. Power for Land, Sea and Air GT2008; 2008 Jun 9-13; Berlin, Germany. Proceedings of ASME: 65-70.

[24] Steam turbines for solar thermal power plants. Siemens AG(2008). Order No. E50001-W410- A105-V1-4A00. Available at

[accessed 12.6.2011].

[25] O. Behar, A. Khellaf, K .Mohammedi, S .Ait-Kaci a Review of Integrated Solar Combined Cycle System (ISCCS) with a Parabolic Trough Technology, Renewable and Sustainable Energy Reviews .( November 2014), 39, 223–250.

[26] Solar Advisor Model (SAM) software .User guide version 2016.03.14. National Renewable Energy Laboratory.

[27] Trnsys 17. (2010) .

[28] Borgnakke C, Richard ES. Fundamentals of thermodynamics, 8 edition. United State: John Wiley & Sons, Inc, 2009.

[29] SD Odeh, GL Morrison, M Behnia . SD Odeh, GL Morrison, M Behnia. Solar energy, June 1998, 62(6) ;395-406.

[30] Montes MJ, Abánades A, Martínez-Val JM. Performance of a direct steam generation solar thermal power plant for electricity production as a function of the solar multiple. Solar Energy (2009) , 83,679–89

[31] Ahmadi GhR, Toghraie D. Parallel feed water heating repowering of a 200 MW steam power plant. J Power Technol 2015;95(4):288–301.

[32] Steinmann, W.-D., Eck, M., Direct solar steam generation in parabolic troughs. Proceedings of the 10th Solar PACES International Symposium on Solar Thermal Concentrating Technologies, Sydney (2000), pp. 107–112.

[33] Regenerative Energiequellen, German Edition .Kleeman, M., Meliss, M.,. Springer, Berlin, Heidelberg (1988).

[34] Hou H, Wu J, Yang Y, et al. Performance of a solar aided power plant in fuel saving mode. Appl Energy 2015;160:873–81.

[35] E Hu, YP Yang, A Nishimura, F Yilmaz, A Kouzani . Solar thermal aided power generation. Applied Energy 87 (2010) .

[36] Yongping Yang a, Qin Yan, et al .An efficient way to use medium-or-low temperature solar heat for power generation e integration into conventional power plant Applied Thermal Engineering 31 (2011) 157- 162.

[37] Yuanyuan Li, Yongping Yang .Thermodynamic analysis of a novel integrated solar combined cycle.Applied Energy 122 (2014) 133–142.

[38] Jiyun Qin, Eric Hu⇑, Graham J. Nathan.Impact of the operation of nondisplaced feedwater heaters on the performance of Solar Aided Power Generation plants.Energy Conversion and Management 135 (2017) 1–8

WSEAS Transactions on Heat and Mass Transfer, ISSN / E-ISSN: 1790-5044 / 2224-3461, Volume 12, 2017, Art. #2, pp. 16-28


Copyright © 2018 Author(s) retain the copyright of this article. This article is published under the terms of the Creative Commons Attribution License 4.0

Bulletin Board

Currently:

The editorial board is accepting papers.


WSEAS Main Site